

Welcome

Floating Solar example from the Netherlands

Co chairs Bjorn Prudon Johan Bakker Ase Johannessen

Presentation ecological impact FPV (Bjorn) – 10 min Questions & discussion – 15 min Presentation new development FPV (Johan) – 10 min Questions & discussion – 15 min

More information: <u>www.innozowa.com</u>

Floating Solar (FPV) in the Netherlands

National goal; 35 TwH (solar and wind) by 2035 Combine solar with existing "landuse, -functions" (roads, landfills, **water**)

Potential area (theory) &		
Type water	Indicatie golfhoogte	Totaal oppervlak (km²)
Binnenwater		
Bassin	-	10
Rivier, kanaal, sloot, haven, gracht, beek	-	1.192
Watervlak golfcategorie 1-2 Overig	0m tot 0,6m	868
Watervlak golfcategorie 1-2 Natura 2000	0m tot 0,6m	545
Watervlak golfcategorie 3 Natura 2000	0,6m tot 1,2m	5.380
Overig binnenwater	-	14
Buitenwater		
Noordzee binnen gemeentegrens	Golfhoogte groter dan 2,0m	959
Noordzee buiten gemeentegrens	Golfhoogte groter dan 2,0m	57.994
Totaal		66.962

.... reality

FPV in inland water/ urban areas

Primair functions

Waterretention

&

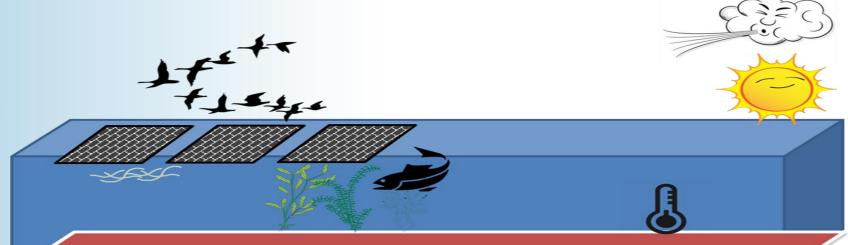
Environment (blue-green area's)

Chances	Challenges
 Unused space in high density areas High demand of green energy close by Proporty value of water = 0 euro 	 Energy-production Shallow water (5-8 ft) & maintenance Ecological impact

Project INNOZOWA

2018 – 2021 First pilot installation on test location

- 3 installations (groundbased (GB as reference), south faced (SF) & tumbler system (TS)
- 9 differtent PV-systems (mono-, bifacial, tilt, reflectors)
- Sun tracking (TS) and Movable (SF) \rightarrow no impact on maintenance
- First yearround measurements ecological effects

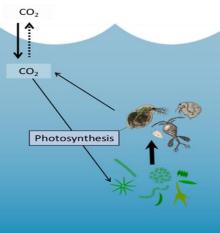

Ecological impact FPV?

Fact

- FPV has an effect on light-climate under water and wind dynamics
- (Almost) no literature/studies on effect available (<2018)

Question (2018-2019);

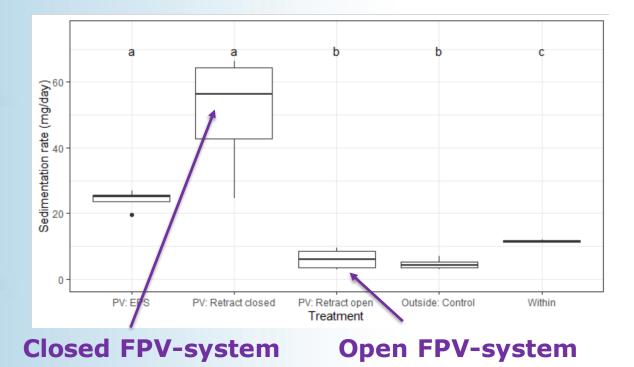
- What physical, chemical, biological effect can we measure
- Combinations of ecological effect (positive/negative)
- Translate effects and mitigate/compensate measures tot new design FPV



Production of water systems

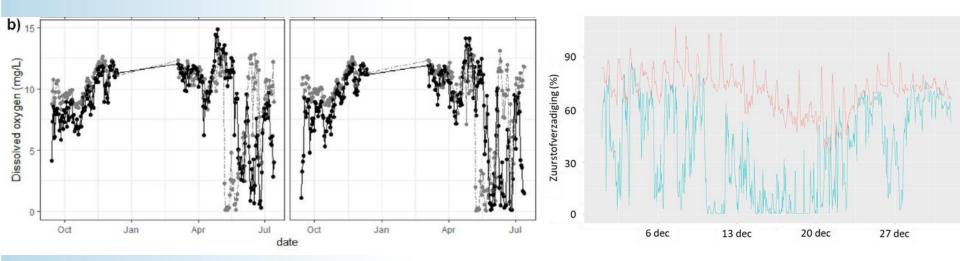
Nutrients (P/N), algeas → no differences

Water vegetation → huge difference (species & biomass)



Sedimentation

Increased sedimentation especially under closed FPV-system



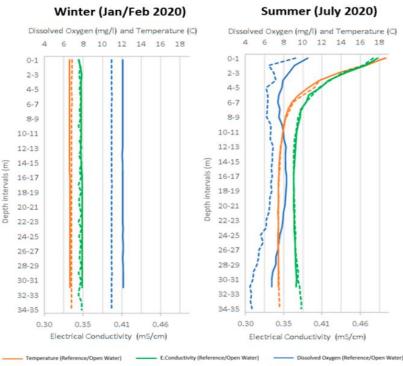
Oxygen dynamics

Hypoxia events (O₂<6mg/L):

- FPV: 157 times
- Reference point: 87 times
- > Under FPV; 80% more !!
- > Also during winter....

Ziar, Hesan... *Teurlincx, Sven*, et al. *Progress in Photovoltaics: research and applications* (2021)

Wiinter 2020-2021

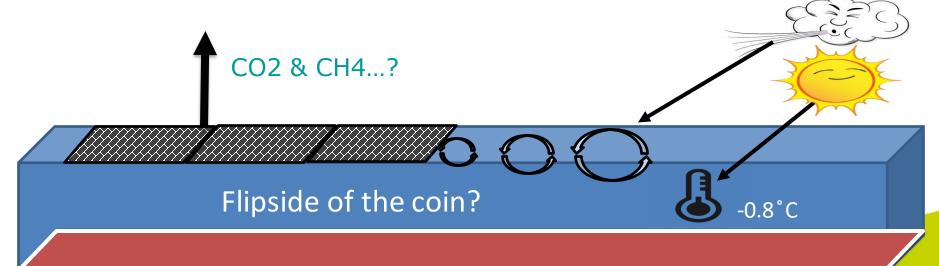


Oxygen-dynamics in deep water bodies

Deep water bodies (> 30ft) with high coverage FPV-systems Same results of oxygen-dynamics (near surface)

de Lima, Rui L. Pedroso, et al. Sustainability (2021)

** Temperature (Under floating solar panels) ***** E.Conductivity (Under floating solar panels) **** Dissolved Oxygen (Under floating solar panel



Results: less light and less wind

- Shift of plant species and bio mass → >3x more organic sedimentation
- More low-oxygen / anoxic conditions

Combined \rightarrow

Decomposition of organic material without oxygen and an increased chance of more greenhouse gas emissions....

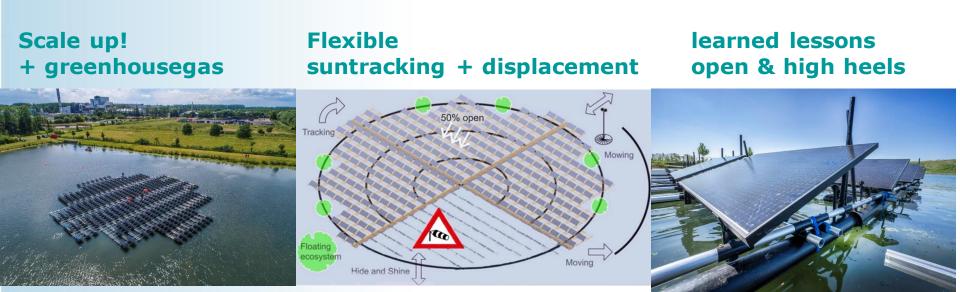
Take out

First study (2018-2021)

- FPV potential (including sun tracking)
- Ecological impact
- Greenhouse gass emission?
- Flexible FPV system
 - No impact on maintanance
 - Potential to prevent ecological impact?

Follow up.... New research (2022-2024);

- Coverage versus ecological effect + greenhouse gass
- New insights for: cost reduction, optimalisation FPVsystem & shared use
- The bigger picture...



Follow up (2022-2024)

Integral design scale up installation

- Variabel (50%-70%) coverage (light)
- High heels (wind)
- Bow thrusters (suntracking & sediment)
- Automated maintanance water vegetation
- Field displacement (eco-crop rotation)

Water as leading principle

To determine coverage, effect, additional solutions

Keeping balance (in space & time)

- ➢ FPV always has an ecological effect → What this means on the long term is yet unknown;
- FPV must be seen as an additional pressor on existing ecological quality of waterbodies and their surroundings;
- System services provided by water (fe. cultural /recreation, production /drinkingwater), reglulating climat-function) are already under pressure;
- > Ecological quality and systems services of water alter in time.

Additional solutions should be taken to;

- Compensate negative inpact (build back better)
- Adapt to new challenges/opportunities/situations (get smarter)

Discussion

- 1) It's a no-brainer that floating (PV)structures on water have an ecological impact.
- 2) There is no time to wait for scientific proof of possible effects on ecology and greenhouse gas emissions. We can and must smarten up now
- 3) The ecological effects of "using water" do not always have to be negative. Strategies for floating solar/ development need to be more inclusive and environmentally aware